Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Real-world data often violates the equal-variance assumption (homoscedasticity), making it essential to account for heteroscedastic noise in causal discovery. In this work, we explore heteroscedastic symmetric noise models (HSNMs), where the effect Y is modeled as Y = f(X) + σ(X)N, with X as the cause and N as independent noise following a symmetric distribution. We introduce a novel criterion for identifying HSNMs based on the skewness of the score (i.e., the gradient of the log density) of the data distribution. This criterion establishes a computationally tractable measurement that is zero in the causal direction but nonzero in the anticausal direction, enabling the causal direction discovery. We extend this skewness-based criterion to the multivariate setting and propose SkewScore, an algorithm that handles heteroscedastic noise without requiring the extraction of exogenous noise. We also conduct a case study on the robustness of SkewScore in a bivariate model with a latent confounder, providing theoretical insights into its performance. Empirical studies further validate the effectiveness of the proposed method.more » « lessFree, publicly-accessible full text available April 24, 2026
-
Camps-Valls, Gustau; Ruiz, Francisco J.; Valera, Isabel (Ed.)Traditionally, Bayesian network structure learning is often carried out at a central site, in which all data is gathered. However, in practice, data may be distributed across different parties (e.g., companies, devices) who intend to collectively learn a Bayesian network, but are not willing to disclose information related to their data owing to privacy or security concerns. In this work, we present a federated learning approach to estimate the structure of Bayesian network from data that is horizontally partitioned across different parties. We develop a distributed structure learning method based on continuous optimization, using the alternating direction method of multipliers (ADMM), such that only the model parameters have to be exchanged during the optimization process. We demonstrate the flexibility of our approach by adopting it for both linear and nonlinear cases. Experimental results on synthetic and real datasets show that it achieves an improved performance over the other methods, especially when there is a relatively large number of clients and each has a limited sample size.more » « less
-
Camps-Valls, Gustau; Ruiz, Francisco J.; Valera, Isabel (Ed.)Recently, structure learning of directed acyclic graphs (DAGs) has been formulated as a continuous optimization problem by leveraging an algebraic characterization of acyclicity. The constrained problem is solved using the augmented Lagrangian method (ALM) which is often preferred to the quadratic penalty method (QPM) by virtue of its standard convergence result that does not require the penalty coefficient to go to infinity, hence avoiding ill-conditioning. However, the convergence properties of these methods for structure learning, including whether they are guaranteed to return a DAG solution, remain unclear, which might limit their practical applications. In this work, we examine the convergence of ALM and QPM for structure learning in the linear, nonlinear, and confounded cases. We show that the standard convergence result of ALM does not hold in these settings, and demonstrate empirically that its behavior is akin to that of the QPM which is prone to ill-conditioning. We further establish the convergence guarantee of QPM to a DAG solution, under mild conditions. Lastly, we connect our theoretical results with existing approaches to help resolve the convergence issue, and verify our findings in light of an empirical comparison of them.more » « less
-
Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.S.; Vaughan, J. Wortman (Ed.)
An official website of the United States government

Full Text Available